Breeding strategy for bean stem maggot resistance in Zimbabwe

Shylet Tsekenedza (PhD Plant Breeding candidate, UKZN)

Supervisor: Prof Shimelis Hussein (UKZN)

Co-Supervisor: Dr C. Mukankusi (Alliance Bioversity International and CIAT) **Co- Supervisor:** Dr Wilson Nkhata (Alliance Bioversity International and CIAT)

Introduction

- Bean stem maggots (BSM) (*Ophiomyia* spp) belongs to Dipteran family, pest of economic importance
- Studies conducted were focusing on-identifying resistant genotypes, understanding of inheritance and mechanism of resistance & best agronomic control practices
- In comparison with breeding for disease resistance, very few released varieties on market
- In addition, several protocols have been used in evaluation for pest resistance, however, there are challenges; rearing of adequate insect population (no standard protocol), screening under natural infestation (depend on environment beyond researchers control).
- GXE is a serious challenge in breeding therefore evaluation & selection should be done under target production environment.
- Seasonal variations & environment------ the use of molecular approaches can reduce false positives when screening for BSM resistance and are also useful in shortening the breeding cycle.

Research objectives

Overall objective

• To contribute to the improvement of common bean production in Zimbabwe and beyond through developing market-preferred bean stem maggot resistant varieties.

Specific objectives

- Develop and validate effectiveness of existing bean stem maggot resistance screening protocols
- Identify genomic regions associated with bean stem maggot resistance using GWAS
- Identify Quantitative Trait Loci conferring resistance to bean stem maggot resistance

Materials and methods

Table 1: Research sites for natural infestation

				Geographic position				
Testing site	Agro Ecological Region	Soil type	Rainfall (mm)	Latitude	Longitude			
Nyanga	1	Loam	1000	17°53'E	32°52'S			
Save valley	5	Alluvial	400	31°56'E	21°01'S			

NB-Nyanga and Save valley Experiment are natural hot spot sites for insect pests

Research objective # 1- Develop and validate effectiveness of existing bean stem maggot resistance screening protocols

Validating field screening protocol at 2 sites in Zimbabwe under natural infestation

Two hot spot areas identified (Nyanga & Save Expt) Delayed planting at both locations (March & Mid April)

1. No choice experiment

Seven net cages per replication, 3 reps, 4 plastic pots in each cage, CRD design, 20 adult flies in each cage, 3 successive screenings

2. Free choice experiment

Three net cages, metal frames covered with fine insect mesh, single row plots 1.5m X0.50mX0.10m, 50 freshly emerged adult flies in each cage, 3 successive screenings

300 ADP lines will be used 10x30 alpha lattice design Plot size-6x 1.5mx0.5m and 10cm in row spacing 3. 20 genotypes planted in polythene bags, replicated 3
times in alpha lattice design
Collect BSM pupae from fields and infest bean plant stems, start life cycle.

Research objective # 2 Identify genomic regions associated with bean stem maggot resistance using GWAS

Materials and Methods

Research objective #3 Identify Quantitative Trait Loci (QTL) conferring resistance to bean stem maggot.

Germplasm-Two resistant and two susceptible genotypes

Mapping population development and advancement

Select susceptible parent #1 X resistant parent #1 and susceptible parent #2 X resistant parent #2. To generate 300 crosses, advanced using SSD selection method to generate 600 F4:5 RILS, evaluated for bean stem maggot resistance using the developed screening protocol

QTL mapping study- F4.5 population will be genotyped using Genotyping by Sequencing at SEQART Africa. The QTL analysis (*Inclusive composite interval mapping* (*ICIM-ADD*) *method in IciMapping V.4.2*) will be used to identify genomic regions and markers for bean stem maggot resistance

Data collection

Resistance on bean fly will be assessed based on:

- No. of feeding punctures
- Stem damage
- Pupae count in each plot
- Plant mortality rate

Agronomic Traits

Agronomic traits	Measurement/scoring scale
Grain yield	Kg per plot
Days to 50% flowering	No. of days from planting to when 50% of the plot plants have at least one or more flowers
Days to 90% physiological maturity	When 90% of pods in a plot have dried
No. of pods per plant	Average no. of pods from 5 randomly selected plants
No. of seed per plant	Average no. of seeds from 5 randomly selected plants
No. of seed per pod	Average no. of seeds per pods from 5 randomly selected plants

Expected outcomes of the study

- PhD thesis
- 5 publications
- New screening protocol for BSM resistance to be developed
- New sources of resistance to BSM identified and confirmed
- Genomic regions associated with BSM resistance will be identified
- BSM resistance population
- BSM breeding strategy developed

Time line of research & thesis writing

	2023				2024				2025			
Activity	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Proposal development												
Germplasm increase, (2) Literature review writing, (3) Setting facilities for screening trials												
Developing & validating screening protocols												
First field evaluations of bean lines												
Developing manuscript for screening protocols												
Developing populations for QTL mapping												
Second field evaluation of bean												
Manuscript development for field screening trial												
Phenotyping and genotyping of F4:5 RILS												
Developing mapping manuscript												
Compiling & submission of the manuscript												
Thesis submission												

Acknowledgements

Alliance

Thank you

