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Background

* Molecular plant stress physiologist

° Salt-induced changes in root architecture in Arabidopsis (PhD,
Amsterdam, The Netherlands)

* Salt-induced changes in root-to-shoot ratio (Arabidopsis) and
exploring salt tolerance in tomato (PostDoc, KAUST, Saudi Arabia)

® Current lab (started in 2020):

* How environment changes plant architecture and which
plant architecture traits contribute to improved resilience?

* Learning from stress resilient plants
* Looking for new ways to describe plant architecture

* Developing affordable setups to democratize plant
phenotyping
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Exploring water
stress
resillience
across species

Arabidopsis thaliana

Wild tomato (Solanum
pimpinellifolium)

Tepary bean (Phaseolus
acutifolius)

Cowpea (Vigna unguiculata)




Discovery pipeline in Plant Architecture Lab

Population
screening

Tralt
o identification

Genes of

Interest

e Phene of interest e Phenotyping * Validation using reverse

e Plasticity e Forward Genetics genetic tools

e Heritability e |dentification of molecular
context

e Contribution to overall
resilience in “real” conditions



Learning from tepary
diversity

* Tepary bean is native to drought
climates of South-Western US and 2 r. - B\ SR
Northern Mexico (NP @l - H \

e Tepary been previously used to
improve stress resilience of common
bean through crosses

» Reference genome of tepary bean
published (Moghaddam et al., 2021)

® 7. acutlis (cultivated)

® P.acutiblis (wild)

® 7. acutipliss var. tenuiblils
® P.parvibliis



Learning from
tepary diversity

* Current diversity panel overrepresenting
cultivated accessions with little natural
variation and 20,364 SNPs (GBS)

* Aim1: Develop natural diversity panel of 400
tepary accessions enriched in wild
germplasm and free from mosaic-bean virus

* Aim 2: Evaluate panel under field conditions
in tepary native environment (Arizona) for
agronomic traits

* Aim 3: Evaluate panel under controlled
conditions for seedling vigour and
performance under control and drought
stress conditions

A\ 4
USDA #&NIFA
= I

Cultivated

Wild

var. tenuifoilus

var. acutifolius

USDA

Duke Pauli, U
of Arizona

Andrew
Nelson, BTI




Learning from
cowpea diversity

* Global natural diversity panel was developed in
UC Riverside (Mufioz-Amatriain et al., 2021)
with 51,158 SNPs

* Genotyping the Nigerian cowpea collection in
collaboration with Ahmadu-Bello University, Dr.
Aliyu Ramatu Enehezeyi (Triad foundation)

* Evaluate the germplasm for drought induced
changes in growth, architecture and
photosynthetic efficiency
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Developing phenotyping protocols for legumes

* Highly complex 3D
architecture
* Comprehensive side-
view imaging to
accurately capture the
digital biomass
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Developing phenotyping protocols for legumes

e Highly complex 3D
architecture

e Detection of drought
induced changes in plant
size and estimation of
daily growth rate
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How can PhenoCage
be usefull for you?

U. bromivora infected

Cheap setup for pot-grown plants s ; 70

(200 $ / setup) q | \\}\ é/ 1\@{ \
RN 0,/ i A B B

Based on afforable (10S) RaspberryPi -ﬁ—-ﬁh- &-\M i Ml

RGB cameras ®

Detailed evaluation of the disease / § % —a— U bromivora nfected

stress symptoms before spore

formation = |

Highly mObile | ’ Time(dav)S g

Open-source code + instructions )

available https://github.com/Leon-

Yu0320/BTI-Plant-phenotyping/ E o
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Time (dav)

PhenoBox, Czedik-Eysenberg et al., 2018


https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/
https://github.com/Leon-Yu0320/BTI-Plant-phenotyping/
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Developing phenotyping - climbing / prostrate growth habit

protoco|5 for |egu mes e Support structures that do not interfere
with image-based extraction of traits

* 3D printed transparent stackable trellis
system

Yu & Sussman et al., in preparation



egumes

* AWWESMO — Arduino-based Weighing
and Watering Unit for estimation of
Evapotranspiration

* Maintaining plants at specific soil-
water holding capacity for drought
experiments

* Measuring daily evapotranspiration
rate

* |nstructions on how to build and
program AWWESMO at
https://github.com/ok84- _ _
star/AAWSMO e
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https://github.com/ok84-star/AAWSMO
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Developed phenotyping tools in action
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Developed

phenotyping tools in

action

Growth Rate at Drought
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* Identified 6 loci associated with natural variation in drought
responses using ASReml based GWAS

* Validating the importance of identified genes for drought stress
tolerance using Arabidopsis homologues
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Further explorations of drought stress responses in cowpea

Metabolome changes in leaf tissue Development of fogo-ponics for

N-acetyl tryptophan
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whole plant imaging & drought stress

Dr. Shannan Sweet
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Future plans

* Generate transgenic lines for gain- and loss-
of-function of identified candidate genes

e Evaluate the lines for drought stress
resilience under controled conditions (BTI) at
early vegetative stage

* Evaluate the lines for early, mid and terminal

drought stress in field conditions (Ahmadu-
BE”O University) Flower-specific mechanisms >
* Look into plant architecture traits and their P >
contribution to drought resilience
 Stack early drought stress resilience genes Seedling vigour / early vegetative resilience >

with other genes conferring drought
resilience at other stages



Plant transformation / tissue culture network

e NSF funded network

* On-line webinars and workgroups
on plant tissue culture / https://plantgene.  Plant

transformation :
atlassian.net/ G N E

* Become a member, provide your
interest in organism-of-
transformation

* Get connected with people and
form working groups on
transformation / tissue culture
methods in your crops of interest

J Joyce van Eck


https://plantgene.atlassian.net/
https://plantgene.atlassian.net/
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