Improving the Bean Value Chain via Breeding at the NDSU Dry Bean Program

NDSU NORTH DAKOTA STATE UNIVERSITY

JUAN M. OSORNO Ph.D. Dry Bean Breeder/Geneticist

Department of Plant Sciences North Dakota State University Fargo - ND

NDSU PLANT SCIENCES

The Value of Interactions: GART Station, July 2022, Zambia

Customer-Based Research?

- Applied context within the food value chain (but still backed up by basic science)
- Attempts to solve specific/practical problems
- Affects all/most actors within the value chain
- Economic, social and/or environmental benefit

NDSU NORTH DAKOTA STATE UNIVERSITY

Breeding = Impact

"The breeder is at the very beginning of the food value chain, so you start here if you want to make impact"

NDSU: North Dakota State University ~12k students (medium size) Among top 100 Research-1 (R1) institutions in the US (Carnegie Classification of Institutions of Higher Education)

ank	Сгор	Percent of US total
st	Spring wheat	50
st	Durum wheat	56
st	Sunflowers	43
st	Barley	35
st	All dry edible bean	s 34
st	Navy beans	38
st	Pinto beans	56
st	Canola	90
st	Flaxseed	95
st	Dry edible peas	67
st	Lentils	44
st	Honey	24

Source: National Agricultural Statistics Service - 2009

NDSU NORTH DAKOTA STATE UNIVERSITY

Crop Breeding Programs ND Ag. Experiment Station

- Oilseeds (canola, flax, crambe)
- Wheat (durum, spring, winter, etc.)
- Potato
- Pulses (dry pea, chickpea, lentil)
- Dry bean (pinto, navy, black, kidney, etc.)
- Barley (6-row & 2-row)
- Soybean
- Oat
- Trees
- Rye, Titricale, Safflower
- Vegetables

NDSU NORTH DAKOTA STATE UNIVERSITY

Dry Bean Breeding & Genetics

- ND is the largest producer of dry beans in the U.S. (~40%)
- MN: 2nd or 3rd largest (~15%)
- ~8 field testing locations across ND+MN
- ~30 Has of trials
- Additional variety trials at NDSU Stations

Crop Breeding Using Modern Tools to Improve Selection Efficiency

- Crop performance (field+quality)
 - High Throughput Phenotyping (HTP)
 - UAVs, robocars, sensors
 - DNA technology
 - Genome sequencing, genomics, DNA markers
 - NDSU: lead institution for 1st bean reference genome sequence (2014)
 - Bioinformatics

NDSU NORTH DAKOTA

- Big data analysis
- Modeling and predictions

Main Market Classes in USA

Pinto	Navy	Black	Great Northern
Red	Pink	Dark Red Kidney	Light Red Kidney

Photo:

2020 U.S. Production 1.74 million MT - ~\$1 billion USD

2022: Just ND+MN: Farm Gate value: >\$500 million USD!

Source: USDA-NASS

NDSU NORTH DAKOTA STATE UNIVERSITY

http://www.ndstudies.org/images/ag/ndregions.jpg

North Dakota Red River Valley

Average farm size: ~750 Has

http://rrvsga.com/wp-content/uploads/2011/08/banner03.jpg

NDSU NORTH DAKOTA STATE UNIVERSITY

NDSU Released Varieties

- Pinto:
 - ND Rodeo
 - ND Falcon
 - ND Palomino
 - Lariat
 - Stampede
 - ND-307
 - Maverick
 - Frontier
 - Hatton

NDSU NORTH DAKOTA STATE UNIVERSITY

- Great Northern:
 - ND Pegasus
- Navy:
 - Avalanche
 - Norstar
 - Arthur
- Black:
 - Eclipse
 - ND Twilight
- Small Red:
 - Rio Rojo
- Kidney:
 - Talon DRK
 - Rosie LRK
 - ND Whitetail
 - ND Redbarn
- Several germplasm lines

How is US Bean Research Addressing World Needs?

- By Focusing Efforts on Key Target Traits:
 - Overall Productivity
 - Seed Yield (many components)
 - Harvest Efficiency
 - Adaptation and Resilience
 - Biotic Stress (diseases/pests)
 - Abiotic Stress (heat, drought, flooding, soil fertility)
 - Quality
 - Visual (seed color, shape, size, etc.)
 - Cooking/canning
 - Health/Nutritional (protein, minerals, flavonoids, etc.)
 - Sensory (taste, texture, appearance, etc.)

NDSU NORTH DAKOTA STATE UNIVERSITY

The Story of Bean Breeding White paper prepared for BeanCAP & PBG Works on the topic of dry bean production and breeding research in the U.S. James D. Kelly

Impactful Examples of Bean Breeding to the Bean Value Chain (with a focus on breeding):

- Gains via conventional breeding:
 - Overall productivity (historic yield gains)
 - Upright plant architecture
 - Disease resistance
 - More recently: Slow Darkening Pintos

https://youtu.be/lkOxJDycRi4 https://youtu.be/wiMI-uGcsIk

Today, we produce more beans per area unit! On-Farm Seed Yields (all classes) – U.S. 1909-2020

NDS

Seed Yield Gap U.S. vs. Developing Regions

NDSU NORTH DAKOTA STATE UNIVERSITY

Disease Resistance

- Identification and deployment of resistance genes have reduced the threat of bean diseases in the U.S.
 - Reduces production costs via reduced use of chemicals
 - Environmental benefits
- Examples:
 - Bean Common Mosaic Virus (BCMV)
 - Virtually all current U.S. varieties are resistant
 - Common Bacterial Blight
 - Modern varieties more tolerant than older.
 - Rust

NDSU NORTH DAKOTA STATE UNIVERSITY

- Incidence/severity varies by region but several resistant varieties available
- Anthracnose
 - Few resistant varieties have been released

NDSU NORTH DAKOTA STATE UNIVERSITY

Susceptible

Resistant

Upright Bean Plant Architecture Effect on Bean Production

Pre-2000

Cutting ...

...then combining

Direct combining

Reduces

- Disease (white mold)
- Harvest time
- Harvest costs

Breeding effort: Transition from Type III to Type II Architecture Growth Habit & Maturity Differences

STATE UNIN

- Most growers (>85%) in ND are doing direct harvest.
- Direct harvest gives them flexibility in their harvest timing for all crops.
- New upright varieties + improved harvest equipment = more efficiency.
- Reduced labor and breakdowns= lower production costs.

More Recently: Slow Darkening Pintos

- ~ 5 years since first varieties were released.
- Initial mixed reactions (as expected with any new technology!).
- 2020: SD pintos were ~35% of the total pinto area in ND.
- 2021: Seed of ND Palomino is sold out!
- Brazil: SD Carioca (BRSMG Madreperola).
- Recent research:
 - <u>SD pintos cook faster!</u>
 - <u>4-7 times more bioavailable iron!</u>

NDSU NORTH DAKOTA STATE UNIVERSITY

2012 harvest – Photo taken in 2017

SD Pintos have more bioavailable iron compared to regular pintos!

NORTH DAKOTA STATE UNIVERSITY

Wiesinger et al., (2021)

NDSU NORTH DAKOTA STATE UNIVERSITY

To be continued....

NDSU Plant Breeding Programs **Using UAVs** to Improve Efficiency

orth Dakota State University crop breeding programs are of critical importance as they focus on developing improved varieties specifically adapted for North Dakota and surrounding states. "A released variety combines many of the desirable traits of economic importance for a specific crop." says Juan Osorno, NDSU dry bean breeder. "However, plant breeding is a multi-year, long-term effort requiring multiple steps including hundreds of crosses annually, evaluations at multiple locations, and selection of superior genetic material. The breeding pipeline can be a cumbersome and tedious effort to find a breeding line with all desired traits. Nonetheless, the contributions of plant breeding to crop productivity are widely demonstrated."

Plant breeders are constantly looking for methods and tools to improve selection efficiency. Basic genetics, genomics, agronomy, physiology, pathology and entomology, among others, have improved the selection process.

Marker Assisted Selection (MAS), high throughput genotyping and evolving genomic tools allow breeders to track some specific genes of economic importance within the breeding pipeline. The current bottleneck for efficient selection in a breeding program is the need to manually measure all these traits of interest in thousands of lines (and across multiple locations). This is technically known as phenotyping.

With a grant from the North Dakota Agricultural Experiment Station, a multidisciplinary group of NDSU plant breeders, NDSU Agricultural and Biosystems Engineering (ABEN) faculty and graduate students are working on the potential application of precision agriculture tools into their breeding programs

"In dry beans for example, the goal is to use Unmanned Aerial Vehicles (UAVs) to regularly collect data over breeding trials for traits such as emergence, plant height, canopy closure, days to maturity and foliar diseases, among others," says Maria de Oliveira, NDSU Department of Plant Sciences graduate student.

The pea breeding project is testing the utility of a UAV for assessing foliar damage in dry pea caused by Fusarium wilt under field conditions." says Sai Manogna Adapa, an NDSU ABEN graduate student. "Similar efforts are underway within the potato breeding program, while the soybean program is collecting UAV-obtained data of progeny row canopy closing rates as a predictor of yield."

In addition, a field robot, driving under the canopy of the crop, is being used to measure traits that are difficult to detect with UAVs such as pod count per plant and stem thickness. Another use for robots is to measure the "under-canopy" temperature in potatoes, which may be correlated with disease incidence

*Findings of this research may also have application in other agricultural management practices in large-scale crop production, like models based on aerial observations predicting when and where to apply disease management and yield estimates during the season," says Hans Kandel, NDSU Extension agronomist.

Data from multiple locations and years will be needed to develop robust prediction algorithms.

FOR MORE INFORMATION Juan Osorno, 701-231-8145, juan.osorno@ndsu.edu Hans Kandel, 701-231-8135, hans, kandel@ndsu.edu YouTube

Search

Using Precision Ag Sensor Technology in Crop Breeding Programs at NDSU

Subscribe

287 views 1 month ago Show more

License

Creative Commons Attribution license (reuse allowed)

- Sort by 1 Comment

NDSU NORTH DAKOTA STATE UNIVERSITY

https://youtu.be/5rnsE45DjD0

13 11

Download

Helping Moving the Needle Up in Other Countries

- International projects (past+current):
 - China
 - Colombia
 - Costa Rica
 - Guatemala
 - Honduras
 - Mexico
 - Rwanda

- Zambia/Malawi/Mozambique NDSU NORTH DAKOTA STATE UNIVERSITY

Additional Research Areas/Projects

- Waterlogging (M. Erfatpour)
- Rust (M. Erfatpour)
- White Mold (J. Figueroa-Cerna)
- Soybean Cyst Nematode (H. Kaur)
- Plant architecture (O. Rodriguez)
- Dicamba (herbicide) tolerance (A. Ali)
- Seed quality (E. Melgar) NDSU NORTH DAKOTA NDSU STATE UNIVERSITY

Innovation Lab for Legume Systems Research

Genetic Improvement of Dry Beans for Bruchid Resistance for Southern Africa

21st February 2023

Juan – NDSU - US

Virginia - Malawi

Project Team

Phil – NDSU - US

Celestina - Mozambique

Carlos – UNL-US

Where is the resistance from?

- ✓ Pioneering work done by Drs. Paul Kusolwa, Jim Myers, Jim Beaver et. al
- Resistance controlled by APA locus originally from tepary bean
- ✓ Developed a variety AO-1012-29-3-3A that is being in the project as a source of resistance

Published April 15, 2016

JOURNAL OF PLANT REGISTRATIONS

GERMPLASM

Registration of AO-1012-29-3-3A Red Kidney Bean Germplasm Line with Bean Weevil, BCMV, and BCMNV Resistance

Paul M. Kusolwa, James R. Myers, Timothy G. Porch, Yulia Trukhina, Abiezer González-Vélez, and James S. Beaver*

Development of Bruchid Resistant Breeding Lines

Screening for Bruchid Resistance –(Lab-based Protocol)

Screening for Bruchid Resistance in the Lab at University of Zambia

Advanced Resistant Breeding Lines from Different Populations

Parents

Resistant Breeding Lines

Parents

Resistant Lines

α-Al Marker Screening

Differences in Resistant (1-21) and Susceptible (22-32) bands with α -AI Marker

Maria – NDSU (Zambian)

KASP marker assisted selection

-publicly available (Tm-shift or KASP-Intertek)

KASP low density genotyping Platform

A DNA-based molecular marker is a genomic DNA (gDNA) fragment located within a genome at a specific position that may or may not be linked to a specific trait of agricultural interest. Trait linked DNA based markers allow us to easily screen breeding materials for favorable alleles associated with traits of interest.

The EiB low-density genotyping service is based on KASP markers. Kompetitive Allele Specific PCR (KASP) is a simplified fluorescence-based methodology to genotype specific polymorphisms or INDELS. This approach is cost effective and offers rapid turnaround for low-density marker applications (between 1 and 200 markers), with applications including specific trait screening, quality control and marker assisted selection (MAS).

The markers available for use in low-density genotyping can be consulted below. This list is continuously updated and improved: kindly remember to revise the list of markers and consult with EIB genotyping services when planning for genotyping, especially new users.

https://excellenceinbreeding.org/module3/kasp https://www.intertek.com/agriculture/agritech/

S	VPs and IND	ELS converted to Tm-s	shift assays and
KΔ	SP markers	Customer SNP ID	Notes
	SHPV000211CIS	bc-3, Hart & Griffiths, 2013	Intertek verified marker
2	snpPV0003	bc-3, PveIF4E1,3,4 _PveIF4E2	Intertek verified marker
3	snpPV00032	ALSChr04_GC_43800347	Intertek verified marker
4	snpPV00038	CBB_SAP6_801	Intertek verified marker
5	snpPV00039	SU91, CB_00005	Intertek verified marker
6	snpPV00050	ANT_Co-3_ss715640025	Intertek verified marker
7	snpPV00066	bgm-1_03_2446460	Intertek verified marker
8	snpPV00072	l gene, 02.48.2799	Intertek verified marker
9	snpPV00083	ALS_Phg2M_08_AC_61470271_B	Intertek verified marker
10	snpPV00135	SD_07_TC_28765329	Intertek verified marker
11	snpPV00156	BGY8.1 QTL, S08_9202267	Intertek verified marker
12	snpPV00157	Ur-3, C11_50646133	Intertek verified marker
13	snpPV00158	Ur-11, C11_51904022	Intertek verified marker
14	snpPV00159	BGY4.1 QTL, S04_2531038	Intertek verified marker
15	snpPV00160	BGY8.1 QTL	Intertek verified marker
16	snpPV00162	bc-1, 03.04.0573	Intertek verified marker
17	snpPV00163	bc-u^d, 05.34.7830	Intertek verified marker
18	snpPV00164	bc-4, Pvmit-1_T_G	Intertek verified marker
19	snpPV00177	Co-1, ss645251	Intertek verified marker
20	snpPV00178	bc-4^2, Pvmit-1_C_G	Intertek verified marker
21	snpPV00183	Co-4^2, S08_2443578	Intertek verified marker
22	snpPV00241	bgm-1, Indel, PvNAC1	Retry
23	snpPV00242	BCMV, Indel, bc-2(2)	Retry
24	snpPV00243	Ur-5, S04_523133v1	New
25	snpPV00244	APA, S04_46273822	New
26	snpPV00245	Phs, S07_5221126	New
27	snpPV00246	Ur-4, ss240	New
28	snpPV00247	Ur-7, S11_31536658	New
29	snpPV00248	SAP6, CB437	New
30	snpPV00249	Co-x, KTR23	New
nttp	://www.bic.uprm.ed	u/?page_id=91 (Soler-Garzón et a	l.) 4

Bruchid Resistant Lines Distribution to Collaborators

- Bruchid resistant lines identified and shipped to:
 - Dr. Juan Osorno USA (North Dakota State University)
 - Dr. Celestina Jochua
 Mozambique
 - Virginia Chisale Malawi
- For seed multiplication and agronomic evaluation

Field visit to Chokwe Research Station, Mozambique 2022

Weevil-Resistant Lines Developed by the Project

AO-3A- ADP 763-10

AO-3A-ADP 763-45

Thank you!

- NDSU colleagues (it takes a village!)
- Bean breeders
- Northarvest Bean Growers Assoc.
- NDDEBSG
- Many others...

US DRY BEAN USDA

https://youtu.be/lkOxJDycRi4 https://youtu.be/wiMI-uGcsIk

Juan.Osorno@ndsu.edu

Tiempo de Cocción: Frijoles Remojados RD SD

~34 min

~26 min

Ahorros potenciales no solo en tiempo sino también en energía! NDSU NORTH DAKOTA STATE UNIVERSITY

Miklas et al., 2020

Tiempo de Cocción: Frijoles sin Remojar

Table 1

NDSU NORTH DAKOTA STATE UNIVERSITY

Postharvest cooking times of regular-darkening and slow-darkening pinto bean varieties.¹

	Variety	Darkening Pattern	Cooking Time (minutes)
RD	Windbreaker	regular-darkening	107 ± 4^{a}
	La Paz	regular-darkening	98 ± 3^{b}
SD	Vibrant	slow-darkening	87 ± 2^{c}
	ND Palomino	slow-darkening	63 ± 3^{d}

Wiesinger et al., 2021

Cambios Mayores en Arquitectura de Planta Han ayudado al Incremento de la Productividad

Volcamiento

Rice

- sd and other
- genes

Multiple modes of action in hormone pathways

Angulo de hoja/ramificación

Corn • *Ig* genes Transcriptio n regulation

Jnited States Department of Agriculture National Institute of Food and Agriculture