

NDSU NORTH DAKOTA AGRICULTURAL

40 Million acres Avg farm size ~ 1,500 acres

Agriculture is in our roots

42 Commodities

Generates \$7.6 billion in cash receipts annual

Date: Sept 29, 2022

NDSU Presenters

DIDIER MURILLO FLOREZ

Research Statistician Developer

Didier is a Mathematician and Statistician leading the development of statistical applications and algorithms that simplify end-user workflows at the ND AES Big Data Pipeline Unit. He is the main developer of FielDHub.

MATTHEW SEEFELDT

Software Development & Media Content Creator

Matthew is a Mathematician creating R-Shiny applications for our team. Additionally he develops multi-media projects for teaching tools for all our audiences. Main contribuitions made to FielDHub and Athena.

ANA MARIA HEILMAN

Senior Big Data Pipeline Manager

Ana is leading a growing team of data scientist, software developers, statisticians/mathematicians and bioinformaticist that support the ND Agricultural Experiment Station.

Main Contributors

RICHARD HORSLEY

Barley Breeder & Head Department of Plant Sciences

Richard is a plant breeder with more than 40+ years of experience in plant breeding, experimental design, analysis of data, and academic administration. He is one of the minds behind the tools and technologies we develop in our team.

JOHAN APARICIO

Research Associate Statistician, CIAT

Johan is a Statistician leading the development of statistical applications and tools used by different research units at the International Center for Tropical Agriculture (CIAT). He is the main developer of Mr.Bean

SALVADOR GEZAN

Statistical Genetics Consultan, VSNi

Salvador is a Quantitative Geneticist and Plant Breeder, who is an Affiliate Faculty for the Department of Plant Sciences at NDSU. He is a contributor to both FielDHub and Mr.Bean applications, and also provides guidance to our team in analytic related projects.

Building Pipelines and Apps to Accelerate Discovery

Introduction to Design Of Experiments

What is Experimental Error?

5-10 word definition...

"Differences in experimental units treated alike"

An appropriate field experimental design should help you to:

- **1- Minimize Exp. Error**
- 2- Measure the existing Exp. error

How to set up correctly your experiment?

1. Randomization

- 1. Replication
- 1. Blocking

Random

Agriculture is in our roots

Randomization is widely recognized as a basic principle of statistical experimentation

- Reduces the bias
- Allows statistical tests
- Improves the accuracy in results

NDSU

NORTH DAKOTA AGRICULTURAL EXPERIMENT STATION

Replication

Increase the precision

Reduces uncertainty

Separates **background noise**

NDSU NORTH DAKOTA AGRICULTURAL EXPERIMENT STATION

Blocking

Provides control of variability

Reduces error variances

Add only blocking factors that explain a

Agriculture is in our roots

ariation!

BUT

DOE in Agriculture and Plant Breeding

The origins of DOE comes from experiments in agriculture. There are a variety of applications in different areas such as soil science, weed science, plant breeding, and precision agriculture among many others.

→Discard/select new genotypes in plant breeding programs

→Compare fertilizer effects under different irrigations systems

→Evaluate plant response under heat stress

→Compare precision agriculture methods

01 Randomization

02 Replication

Figure from: https://www.sare.org/wp-content/uploads/how-to-conduct-research-on-your-farm-or-ranch.pdf

Agriculture is in our roots

03 Blocking

Field Heterogeneity Spatial Correlation in field trials designs

- The experimental field is never completely homogeneous.
- Even before the plants are established in the field plots, there is some level of variability in soil properties.
- Experimental units that are closer together tend to be more similar than plots that are separated by greater distances.
- Row and column data are utilized to explain spatial variability in the field.

DOE Experimental Designs in Agriculture (especially Plant Breeding)

- Randomized Complete Block Design (RCBD)
- Augmented RCBD
- Alpha-Lattice Design
- Partially Replicated Designs (prep)
- Unreplicated designs

Randomized Complete Block Design (RCBD)

- Each of the v treatments occurs once in every block (or replicate), and the number of units per block, k, is equal to the number of treatments (v=k).
- Advantage: balanced dataset, i.e. all treatment comparison has the same precision.
- Consider a study where we want to design an experiment with v = 18 treatments, where each will be replicated r = 3 times.

Randomized Complete Block Design 9X6

0	T13	T1	Т5	T11	T4
,	T15	T17	T14	ТЗ	Т2
2	Т6	Т9	Т8	T18	T16
5	T18	T14	T17	Т9	T5
3	Τ4	T1	T16	T10	Т2
,	T11	Т8	T13	T12	Т6
2	T6	T10	Т9	T18	T14
1	T15	ТЗ	T16	Τ5	Т8
ļ	Т7	T1	T2	T13	T17

Augmented Design RCBD

- An augmented design is any standard design augmented with additional treatments in the complete block, incomplete block, row, column, etc. (Federer, 1961).
- Checks are analyses to estimate the error variance, which is later used for comparing the treatment levels.
- Consider an example with: 120 treatments, and 4 checks that are augmented to six blocks of size 2x12.

Agriculture is in our roots

38	83	113	77	43	47	01	1	5	3
72	25	58	78	2	11	110	55	4	18
88	4	32	09	3	39	74	1	37	48
90	06	03	24	121	99	93	42	41	94
92	26	2	10	67	1	52	28	22	123
4	36	49	115	87	85	118	98	17	3
70	64	73	66	2	96	71	13	61	33
27	05	112	21	35	97	120	84	3	1
16	34	95	14	79	1	3	23	76	07
20	19	122	30	114	116	54	2	4	31
12	2	124	1	82	68	111	53	4	40
7	9	65	80	75	02	8	62	119	3

Augmented RCBD Layout 12 x 12

Alpha-Lattice Design

- When several treatments are evaluated, blocks can become quite large, and experimental units within the block are no longer homogeneous.
- Particularly recommended in cases where the number of treatments is large.
- Considering the example with 80 treatments, 3 reps and 5 units per incomplete block.

	51	64
	14	6
	73	62
	56	80
	47	77
	40	44
,	36	65
	45	30
-	2	7
	12	19
	1	14
	74	10
	77	41
	44	6
	24	63

36	37	3	57	60	18	69	33	70	59	79	72	17	54
67	24	23	74	15	63	66	4	8	5	11	43	58	75
39	68	45	35	22	65	13	40	49		46	7	55	19
25	31	29	9	42	20	16	41	50	30	48	10	61	28
52	12	32	21	76	26	27	1	78	2	44	71	34	53
50	29	48	16	53	51	46	72	60	78	52	28	54	14
9	33	35	6	37	38	5	73	18	25	10	55	63	23
4	15	17	76	66	71	8	69	31	56	75	41	11	34
61	79	32	70	64	42	43	58	47	20	3	21	22	49
68	80	39	59	67	74	26	1	62	77	27	13	57	24
62	68	5	66	56	39	7	51	22	29	13	42	40	11
69	28	80	17	79	72	78	65	30	43	49	26	27	70
19	25	52	33	2	54	12	36	64	21	38	53	8	3
32	46	34	71	9	31	15	61	23	67	48	45	60	73
50	76	57	20	75	59	55	16	4	47	18	58	35	37

Alpha Lattice Design Field Layout 15X16

Partially Replicated Design

Designs where:

- A portion of treatments are replicated two or three times.
- The rest of the plots are considered for unreplicated treatments.
- Consider an example with: 225 treatments, 75 treatments appear twice and the rest 150 appear just one time.

Agriculture is in our roots

Partially Replicated Design 15 x 20

22	150	12	20	69	37	99	58	108	162	87	1	179	52	19	60
	65	43	223	74	144	205	147	70	9	82	212	113	125	180	137
	132	211	10	117	163	111	204	207	44	51	4	53	121	184	25
	72	67	29	202	104	53	55	18	30	39	152	159	43	94	66
	42	169	133	4	218	160	23	64	96	6	24	120	86	18	61
	157	3	168	35	26	17	48	27	69	154	203	56	161	170	73
	45	30	36	7	181	74	63	2	38	61	67	54	57	55	142
	107	62	95	64	136	15	158	89	173	47	51	63	40	76	191
	176	101	25	44	221	32	153	199	59	213	110	46	131	28	7
	75	91	214	105	128	148	10	97	200	172	194	21	11	88	140
	62	6	124	103	21	50	78	93	225	31	83	175	210	45	66
	220	58	26	119	37	100	3	92	28	36	34	166	188	149	112
	20	217	70	201	9	71	102	22	197	193	38	174	135	141	189
	139	190	81	126	56	183	5	46	8	129	206	68	17	54	106
	85	109	29	71	41	75	222	15	215	16	156	123	41	47	151

Unreplicated Designs With Checks

Designs where:

- A large number of entries are unreplicated together with a group (usually 3 or 4) of check genotypes that are replicated in order to capture and model potential field effects.
- They enable the evaluation of a large number of genotypes (entries) in those cases with limited quantities of seed.
- Several arrangements exist: random, diagonal, optimized

	247	2	167	229	76	79	22	46	205	2	206	31	230	16	176	62	126	3	278	152
	149	270	253	181	2	130	7	114	244	173	17	81	2	137	106	49	277	84	127	273
	191	128	15	261	164	156	103	1	5	141	190	63	284	240	269	1	174	25	160	222
	162	215	1	28	235	27	40	9	165	255	4	138	45	148	35	276	219	111	3	119
	64	256	30	281	26	3	267	24	10	258	187	82	60	4	68	109	32	90	239	50
	4	204	87	271	144	225	196	241	1	36	245	142	192	33	131	43	2	20	200	89
	42	100	237	1	212	280	139	199	231	182	73	4	184	168	56	178	155	117	124	2
WS	195	77	234	66	198	57	3	107	242	260	248	185	217	145	3	18	147	12	140	61
RO	179	4	169	58	54	83	194	65	14	1	37	272	47	150	268	251	122	1	158	283
	104	80	101	249	4	102	41	59	44	186	38	39	3	105	125	226	75	197	69	108
	218	211	29	74	282	34	171	1	202	115	151	8	193	243	210	2	159	264	180	236
	129	153	3	110	95	203	170	161	67	85	3	11	92	177	189	172	232	88	1	98
	209	123	86	224	52	4	201	275	99	157	94	55	254	2	207	19	53	6	257	143
	4	48	112	96	259	279	113	21	4	252	223	71	274	146	175	116	2	216	51	78
	233	166	188	2	134	227	135	263	133	120	136	3	228	250	154	132	70	221	118	3
	266	93	163	121	91	213	4	72	13	214	265	208	23	220	1	246	262	238	97	183

Un-replicated Diagonal Arrangement 16 x 20

NDSU NORTH DAKOTA AGRICULTURAL EXPERIMENT STATION

Multiomic analyses in plant breeding Designing & Analyzing Your Experiments Using FielDHub & Mr.Bean

Presented by Big Data Pipeline Team Didier Murillo Florez Matthew Seefeldt Johan Aparicio Ana Maria Heilman

Part 3: FielDHub

Agriculture is in our roots

Date: Sept 29, 2022

What is FielDHub

- FielDHub is an R package/Shiny app that allows creating randomizations for a variety of experimental designs with applications in agriculture, plant breeding, forestry, animal, and biological sciences.
- The Big Data Pipeline Unit at NDSU is in charge of the development and maintenance of FielDHub. The app release was on May 2021 at CRAN. Recently, the team released a second version with new features.

Fiel D. Hv

Field Design Solutions Software

FielDHub Sources

GitHub: <u>https://github.com/DidierMurilloF/FielDHub</u>

CRAN: https://cran.r-project.org/web/packages/FielDHub/index.html

Web Page: https://didiermurillof.github.io/FielDHub/

JOSS Paper: <u>https://joss.theoj.org/papers/10.21105/joss.03122</u>

YouTube: <u>https://www.youtube.com/watch?v=Q9bftid0kPw&t=75s</u>

Questions

Alliance

International Center for Tropical Agriculture Since 1967 Science to cultivate change

Thank you

Agriculture is in our roots

NDSU NORTH DAKOTA AGRICULTURAL EXPERIMENT STATION