Kirkhouse Trust Meeting, Livingstone, Zambia Monday 27th February 2023

Royal Botanic Gardens

Kev

Leveraging bean crop genetics and diversity for climate adaptation

Caspar Chater

c.chater@kew.org

Stomata, gas exchange and plant water status

Stomata control water uptake and loss by transpiration.

Stomata control:

- Water loss
- Nutrient accumulation
- CO₂ uptake
- Evaporative cooling
- Pathogen responses

Short-term aperture adjustment

Transpiration from stomata

Stomatal development is tightly controlled

Royal Botanic Gardens

Epidermal Patterning Factors (EPFs)

- Cysteine-rich
- Cleaved and secreted peptides
- Fine-tune stomatal patterning processes
- Receptor agonists (EPF1/EPF2) inhibit stomata
- Receptor antagonist (EPFL9/Stomagen) induces stomata

Improving drought tolerance by reducing stomatal densities

Journal of Experimental Botany doi:10.1093/jxb/erz248 Advance Access Publication 6 June 2019 This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

Reduced stomatal density in bread wheat leads to increased water-use efficiency

Jessica Dunn^{1,*,(D)}, Lee Hunt^{1,*}, Mana Afsharinafar¹, Moaed Al Meselmani¹, Alice Mitchell¹, Rhian Howells², Emma Wallington², Andrew J. Fleming^{3,†,(D)} and Julie E. Gray^{1,†,(D)}

¹ Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
² The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, UK

³ Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

* These authors contributed equally to this work.

⁺Correspondence: a.fleming@sheffield.ac.uk or j.e.gray@sheffield.ac.uk

University of York, YO105DD, UK; ³Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, UK

Duncan D. Cameron Tel: +44 (0)114 222 0066 Email: d.cameron@sheffield.ac.uk

(e) 30.5

30.0

29.5

29.0

28.5

28.0

1R64 control

Plant temperature (°C)

Total grain yield (g)

Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions

Robert S. Caine¹ (D), Xiaojia Yin², Jennifer Sloan¹ (D), Emily L. Harrison¹, Umar Mohammed³, Timothy Fulton^{1,4} D, Akshaya K. Biswal^{2,5} D, Jacqueline Dionora², Caspar C. Chater^{1,6} D, Robert A. Coe^{2,7}, Anindya Bandyopadhyay², Erik H. Murchie³ D, Ranjan Swarup³ D, W. Paul Quick² and Julie E. Gray¹ D

Reducing bean g_s could improve WUE without a C penalty

Legumes are special:

- leaf N non-limiting to photosynthesis (A).
- \therefore A not \propto to leaf N.
- Reducing g_s could increase water use efficiency (WUE) 120–218% and maintain A.

How can we reduce g_s ?

Breeding legume crops with low stomatal densities (SD) is one way.

But N fixation is Carbon hungry!

Root water uptake

Simulated WUE gains from breeding legumes with reduced g_s . Lines: g_s vs WUEi relationships (circles, Vicia faba; diamonds, Glycine max; squares, Lupinus alba; triangles, Cicer arietinum).

Mark Adams et al. NewPhyt 2018.

AtEPFL9 peptide promotes bean stomatal development

Using the soybean model to test EPFs and low stomatal densities

CrossMark

Plant Cell Rep DOI 10.1007/s00299-017-2118-z

RESEARCH ARTICLE

CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene *EPFL9* in rice

Xiaojia Yin¹ · Akshaya K. Biswal^{1,3} · Jacqueline Dionora¹ · Kristel M. Perdigon¹ · Christian P. Balahadia¹ · Shamik Mazumdar¹ · Caspar Chater^{2,4} · Hsiang-Chun Lin¹ · Robert A. Coe¹ · Tobias Kretzschmar¹ · Julie E. Gray² · Paul W. Quick^{1,5} · Anindya Bandyopadhyay¹

- *GmEPFL9* deletion could phenocopy *EPF2* overexpression:
- low SD and improved WUE.
- Collaborations with Tom Clemente (Nebraska), Andrew Leakey (Illinois), and Akshaya Biswal (CIMMYT).

Overexpression of Common bean PvEPF2 reduces stomatal density in soybean

Low-SD soybean have lower g_s and higher WUE

Jess Dunn, Miles Bate-Weldon, Chater et al. unpublished.

Leveraging Peptides to Enhance legume N fixation for sustainable agriculture

Dr. Litzy Dr. Carolina Ayra Pardo Isidra Arellano

Prof. Oswaldo Valdes-López

Prof. Julie

Gray

- My stomatal EPF work has identified novel EPF signaling pathways in nodulation.
- By understanding bean N fixation we can improve crop yields and reduce negative environmental impacts.

Royal Botanic Gardens

Common bean WUE and N fixation improvement

Identify 'hot' mutants

Identify 'cool' mutants

Dr. Jose

Polania

The University Of Sheffield.

WGS and transcriptomics to identify causative variation ٠ underlying phenotypes.

Dr. Alexis

Acosta

Effects of and on WUE and N fixation.

Dr. Pablo Peláez

Dr. Delfeena Eapen

Centro de Ciencias Genómicas

Instituto de Biotecnología UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Prof. Alejandra Covarrubias

Prof. Gina Hernández

۲

•

•

Characterising Drought Tolerance in Colombian Common Beans

Kate Denning-James

Dr. Jose de Vega

Diversity panel (Andean and Mesoamerican)

- Domesticated and wild
- Water deficit responses
- JIC Glasshouse vs CIAT field experiments.
- GWAS and transcriptomics
- To identify novel bean traits and diversity

Phaseolus crop wild relatives with heat and drought stress tolerance traits

Dr. Claudia Lowe

- FIGS: Focused Identification of Germplasm Strategy
- Ecogeographic variables in wild Phaseolus from hot / dry areas
- Faster than screening thousands of accessions in the glasshouse or field
- Test populations and identify traits

Royal Botanic Gardens

Milpa 2030: transdisciplinary approach

IPICYT INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.

Dr. Justin Moat

Participatory Research: Stakeholder interviews, workshops, and data collection

Climate Niche Modelling: Projections 10, 20, 30 years ahead.

Experimental heat- and -drought resistant Altiplano milpa: Comparing elite and landrace germplasm.

DRA. NATALIA MARTÍNEZ TAGÜEÑA IPICYT

Consejo Potosino de Ciencia y Tecnología

Accelerated Diversification for Climate Resilient Agriculture

oval Botanic Gardens

- £2.5 million project funded by Calleva.
- Focus on drought resilient crops for sub-Saharan Africa.
- Gene editing a Vigna crop for farmer and consumer acceptance.
- Target-species consultations with in-country partners and international experts

Royal Botanic Gardens

Bean crops of the future:

- Stomata and nodules provide opportunities for crop improvement.
- Complex effects of above/below-ground legume signalling.
- Complex landscape of evolution, domestication, diversity, and culture.
- Fine-tune targets for more extreme climates.

Improving our bean crops can strengthen food and water security under climate change

